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Abstract. We examine the interpretation of the light scalar meson nonet as bound states of the scalar
diquark and the scalar antidiquark using the QCD sum rule approach. Our results are obtained by means
of the operator product expansion (OPE) including operators up to dimension 8. They show no evidence
of the coupling of the tetraquark states to the light scalar meson nonet.
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1 Introduction

The quasi-bound scalar diquark is one of the main can-
didates as a building block of stable multiquark sys-
tems [1]. Both, perturbative one-gluon exchange [2] and
non-perturbative instanton dynamics [3] favor the ex-
istence of such clusters inside conventional and exotic
hadrons. Maiani et al. [4] associate the unusual proper-
ties of the light scalar nonet of mesons ¢(600), %(800),
f0(980) and ag(980) to their structure as bound states of
diquark and antidiquark.

It is important to obtain a justification for such
tetraquark picture from QCD. Recently, the QCD sum
rule techniques [5] were used in papers by Brito et al. [6]
and Wang et al. [7] to calculate the decays and masses
of the members of the light scalar meson nonet in a
tetraquark picture. Their calculation took only into ac-
count the contributions from operators up to dimension
d = 6 in the OPE. In [8,9] it was shown that, for multi-
quark systems, potentially important contributions to the
QCD sum rules may arise from the operators of higher
dimension d > 6 and, if not considered, wrong conclu-
sions about the properties of the exotic hadrons might be
drawn.

In this paper we apply the QCD sum rules (SR) tech-
nique to the light scalar meson nonet described as systems
composed of the scalar diquark and the scalar antidiquark
as done in [6]. Using the factorization hypothesis for cal-
culating the OPE, we show that the contribution from the
operators of dimension 8 is dominant and leads to the de-
struction of SR. We find no evidence for the coupling of
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the above structure of diquarks to the light scalar meson
nonet within the QCD SR approach.

2 QCD sum rules for the scalar nonet

In the picture of the tetraquark states, the light scalar
meson nonet is generated by the diquark in the 3; and
the antidiquark in the 3¢, where the subscript f stands
for flavor. The diquark and the antidiquark are assumed
to belong to 3., 3. in color space and to spin-zero state.
Their conventional wave functions in flavor space are given
by

1 _
o600) = fualfnd].fo(950) = = (fuslas] + ds]ds] ),
V2
_ 1 _
at (980) = [us][ds], aoz—(us us| — |dsl|ds] |,
0 (980) = [us][ds], ag ﬁ[][] [ds][ds]
ag = [ds][as], k7 (800) = [ud][ds], &° = [ud][us],
R0 = [us][ad], ~~ = [ds][ud], (1)
where the square bracket represents the normalized anti-
symmetric diquark (antidiquark) state [1].
From this structure, the interpolating current for the
scalar nonet in eq. (1) can be written as

(2)

where I' = 49140 and Ng is the normalization constant.
Here, the indices a, b, ¢, . . . denote color and the subscripts
1,2, 3,4 are introduced for flavor. The index S labels each
meson in the scalar nonet. €4, and €,4. guarantee that

Js = Nseapeade(ah,Ta2) (G3al'Th, ) »
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Fig. 1. Diagrams contributing to the sum rule in eq.

the diquark and the antidiquark belong to 3. and 3., re-
spectively. The antisymmetric structure of the nonet in
both flavor and color spaces requires that the spin matrix
I" must have the following property:

m=-r (3)
under the transpose of the spin indices. Here we take I' =
C~s5 in order to consider the scalar diquark-antidiquark

system. The interpolating currents for each meson in the
nonet read

Ja = Eabceade(ugﬂc’y")dc)(adC’YSdZ) P

Jfo = %eabceade ((u50755c)(ﬂd0’7555)
HAT O daCsst) )

Jag Eabceade U’b C’Y5Sc UdC’j/5S )
—(df Cvs5.)(daCys5L ))

(4)

where the overall negative sign from the identity I' = —I"
for I' = C'ys is ignored.

We consider the correlator of the currents to get the
QCD SR for each meson:

Jn+ = Eabceade(ugCVSdc)((ijfYSgZ) 5

s(g) = i / A (0T Ts(2)TH0)[0). ()

Within the narrow resonance approximation, including
the operators up to dimension 8, after Borel transform-
ing, we obtain the QCD SR for each meson which can be
written in the form,

CoAM™E,

+ G562 (GP)MPE,
(a) (®)

+ <C’£2ms<qq) + Cf3ms<ss>> MCE,

(e)

) with the mass of the strange quark denoted by X.

+ <C6S,1<QQ>2 + 065,2<QQ><55>) M*E;

(d)
+ <Cg,3msigc<§g . G8>E1 + msigc<q0— . Gq>

x(C§ 4 Er + c&wg) M*

(e)
myg(C?) <<qq>(05,1Eo+c§,2vvo>+c§3<ss>Eo) M2

f)
n (c§4<qq>z'gc<sa Gs) + O (ssYige(qo - Ga)

= 2f§m%e_m25/MZ, (6)

+C§ 6(q9)ige(qo - Gq>) M?*E,
(9)

where M is the Borel mass. The decay constant and the
mass of the mesons of the scalar nonet are defined by

V2fsms. (7)

In fig. 1 the diagrams which contribute to the sum rules are
shown. The contribution from the continuum is encoded
in the functions E,, (M), W, (M), and W,,(M) [8] defined
by

(01Js]S) =

2
1 0 2 /32
E, (M) = d 2 —s*/M=/.2\n
(M) F(n+1)M2n+2/o ° e "
1

- - Sg 2 752/M2 2\n
Wy (M) = F(n+1)M2"+2/0 ds e (s%)
x (—2In(s*/A*)+Inm+p(n+1)+1p(n+2)+2v —2/3),

2
1 0 o 522, 2\n
Tt DAEe /0 ds? e /M7 (s2)

x(—2In(s*/A%)+In T+ (n+1)+¢(n+2)+2vg) ,

Wa(M) =

(8)

where sq is the threshold of the continuum and (n) =
14+1/2+ - —|—1/(n—1)—’yEM. The first index in the
coefficients C'7 4., denotes the dimension in powers of energy
of the operators In order to get the contributions from the
operators of dimension 6 and 8, we use the factorization
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hypothesis which is based on 1/N, arguments [10]. Here we
would like to point out that we do not include (g;GGG) in
the operators of dimension 6 and (g2G?)? in the operators
of dimension 8 since they are produced in OPE of higher
orders in the expansion in the strong coupling constant.
Furthermore, it is well known [11,12] that contribution
to QCD SR from pure gluonic operators is small for the
hadrons consisting of light quarks. Note that thanks to
the structure of the interpolating currents, the sum rules
for f5(980) and a((980) are the same. The coefficients in
the sum rules for each meson are the following:

1. o:
0071 = 29 . 576’ 04;1 = 210 . 3,6’
C61= g2 e~ 12 9)
and the others vanish.
2. fo and ap:
C«foyao _ 1 fo,ao 1
0,1 29 56’ 4,1 210 . 3,6’
o 1  a 1
04{1027 b= Tot.gq4 Cif)g’ = 34’
1
fo,a0 _ fosa0 _
Cor =0, 06’020*127&’
Cfo,ao _ 1 fo,ao0 1 fo,ao0
T 27 3747 G4 T gbpa T TGS
fo.ao _ 5 fo.a0 _ 1
O =g T g
1 1
Cfo,ao _ , Cf(),ao — _ Cfo,ao
34 2472
it = 0. (10)
3. K:
. 1 . 1
Con = 29 . 576 Cir= 210 . 3,6 °
K 1 K 1
0472 = 25 3l 4,3 = 26 3rd
K 1 K K 1
06,1 = 247T2 = 06,27 06,3 28 371_4 ?
K 1 K K 5
Coa = QTpd G655 Csq1 = T 98 . gt
K 1 K 1
C2=—grgm  Ga=ggm
K 1 K K K
Cs,4 = 4872 = Cs,sv 08,6 = 208,4- (11)

Before finishing this section let us comment on the pos-
sible deviation of the numerical values of the condensates
of dimension 6 and 8 from their factorization values. This
issue was discussed in recent papers [13,14] using the OPE
expansion for the V + A correlators and data from ete~
annihilation and hadronic 7 decays. We point out that the
color and the Dirac structure of our condensates of dimen-
sion 6 and 8 are different from the analysis of the OPE of
the V 4+ A correlators so that it is difficult to use directly
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their results in our case. But even if we assume that the
ratios of violations of the factorization hypothesis, in our
case, for the condensates of dimension 6 and 8, are simi-
lar to those presented in [14], our final conclusion will not
change due to the dominant contribution from the con-
densate of dimension 8 to the sum rules. Unfortunately,
since there is no experimental data to be applicable to the
present condensates, we do not have any other choice but
the factorization hypothesis in calculating them.

3 Numerical results

For the numerical analysis, we use the following values of
the parameters [6]:

ms = 0.13GeV, (u) = —(0.23)% GeV?,
_ (33) _ - _ 2/~
fs= = 0.8,  ig.(qo - Gq) = 0.8GeV(qq),

> (G*) = 0.5GeV*. (12)

Comparing the strength of the coefficients and the numer-
ical values of the various condensates, one can see, in the
left-hand side (LHS) of the sum rules eq. (6), that the op-
erators of dimension 6 and 8 give the main contributions.
More precisely, the contributions from the operators of
dimension 6 and the last three operators of dimension 8
with the coeflicients C’8 45 C’8 5, and C’SG dominate the
sum rule. Furthermore, the contribution from the d = 8
operators comes with opposite sign to that from the di-
mension d = 6 operators in the physical region of Borel
mass M ~ 1GeV, and the former becomes larger enough
to overcome the latter.

In figs. 2, 3 and 4, the LHS of the sum rules eq. (6)
up to the operators of dimension 4 (short-dashed line),
6 (long-dashed line), and 8 (solid line) as a function of the
Borel mass M for f,(980), ag(980), o(600), and x(800) are
shown with the thresholds, sg" =1.22GeV, s§ =1.0GeV,
and s§ = 1.1 GeV [6,7], respectively.

As shown in the figures, the most dominant contri-
bution comes from the operators of dimension 8: conse-
quently, the QCD SR cannot have physical meaning be-
cause the LHS is negative definite. One could think that

= 6 ; - : ;
> t  Forfoand ay
3 Ak 50=1.22 GeV >
T //
(=]
= //
S ?f ~
= -
S -7
) e
=
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2+ up tod=4 - - - -
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Fig. 2. The left-hand side of the QCD sum rule for f,(980)
and ao(980) with the scalar diquark and the scalar antidiquark.
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Fig. 3. The left-hand side of the QCD sum rule for ¢(600)
with the scalar diquark and the scalar antidiquark.
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Fig. 4. The left-hand side of the QCD sum rule for x(800)
with the scalar diquark and the scalar antidiquark.

contributions from higher-dimensional operators d > 8
might lead to stabilization of the QCD SR. However, we
mention that the contribution from the operators of di-
mension 10 to the QCD SR is constant. They have the
form of ¢2(G?)(qq)?, (ig.(go - Gq))?, and m(gq)® with
the factorization hypothesis. Since their values are small,
their contribution to the QCD SR are expected to be very
small. The next operators are of dimension 12, 14, ....
They appear with powers of M2 in the sum rules and
therefore their contribution is expected to be small in re-
gion where M ~ 1GeV.
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4 Conclusion

Our main conclusion is that we do not find a justification
for the interpretation of the light mesons in the scalar
nonet as the scalar diquark-antidiquark bound states
within the QCD SR approach. We have demonstrated that
the contribution of the operators of dimension 8 with the
factorization hypothesis is very large and leads to the dis-
appearance of the coupling of the tetraquark states to the
light scalar meson nonet. Of course, this conclusion might
change if another type of interpolating currents is consid-
ered or the factorization is broken in some unexpected
way. The investigation of the properties of tetraquark
states within the QCD SR approach with other interpolat-
ing diquark currents, e.g., the pseudoscalar diquark, the
vector diquark, or with some mixture of ¢g configurations,
is in progress [15].

Author is grateful to A.P. Bakulev, A.E. Dorokhov, B.L. loffe,
H. Kim, N.I. Kochelev, S.H. Lee, S.V. Mikhailov, A.G. Ogane-
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